

Determining long-term erosion rates in Panama An application of ¹⁰Be

Veronica Sosa-Gonzalez Defense Presentation

Outline

- Background
- Introduction
- Methods
- Results and
 Interpretations
- Conclusion
- Final remarks

Photo credits: K. Nichols

Objectives

Determine long-term erosion rates in Panama, using
 ¹⁰Be measured in river sediments

Effect of physiographic controls on erosion

 Assess sediment delivery to rivers by landslide events, by way of grain-size analysis

Panama

- Location
 - 7° 9° N
 - **77°-83°**W

- Climate
 - 24 28 °C
 - 1,500 3,000 mm Pacific slope
 - 4,000 mm Caribbean slope

Panama relief

Location of Panama

Sediments

- Aquatic biota
 - Temperature
 - Dissolved oxygen
 - Primary producers activity
- Water treatment
- Reservoir lifetime

Concepts

- Erosion
 - Physical weathering

- Denudation
 - Chemical and physical weathering

- Erosion rate: the pace at which material is removed from the basin
- Sediment yield: Sediment discharged from the basin

Cosmogenic isotopes- ¹⁰Be

Isotopic formation

Cosmogenic isotopes- ¹⁰Be

Isotopic formation

Cosmogenic isotopes-10Be

Benefits of the method

- Integrate enough time to even out extremes
- Serves as benchmarks
- Assumes steady state

 Depends on quartz distribution in the watershed's bedrock

Sampling

Laboratory Methods

Isotopic content and erosion rates

Accelerator Mass Spectrometry –LLNL
CRONUS Earth

Results

Erosion rates: 26.1 m/Myr to 597 m/Myr Average: 218 m/Myr Area weighted average: 150 m/Myr

Silicate weathering

R	2	=	0	•7	2	6	;	р	=	0	•	0	0	4	-
---	---	---	---	----	---	---	---	---	---	---	---	---	---	---	---

River (sample ID)	Chemical weathering rate (t km ⁻² yr ⁻¹)	Total weathering rate (t km ⁻² yr ⁻¹)	Percent of chemical weathering in total
Anton (ANT)	38.6	512.2	7.5
Chagres (CHAG2009)	20.8	184.5	11.3
Chiriqui Viejo (CHVIEH)	42.7	808.3	5.3
Chico (C- NATA)	13.8	87.7	15.7
Cobre (COBRE)	26.2	230.9	11.3
Felix (FELIX)	34.2	1647.4	2.1
San Pablo (SANPAB)	26.9	388.4	6.9
Tabasara (TABA)	23.7	235.0	10.1
Vigui (VIGUI)	26.5	265.0	10.0

Topographic controls

No relationship found between area, slope, relief, elevation

Shaded relief map of Panama

Climatic controls

- Temperature seasonality
 - R²=0.445, p =0.004
- Precipitation dry month
 - R²=0.319, p =0.045
- Precipitation seasonality
 - R²=0.394, p =0.012
- Precipitation dry quart
 - R²=0.376, p =0.017
- Isothermality
 - R²=0.145, p =0.015
- Precipitation
 - R²=0.307, p =0.054

Annual precipitation (mm) in Panama

Climatic controls

- Temperature seasonality
 - R²=0.445, p =0.004
- Precipitation dry month
 - R²=0.319, p =0.045
- Precipitation seasonality
 - R²=0.394, p =0.012
- Precipitation dry quart
 - R²=0.376, p =0.017
- Isothermality
 - R²=0.145, p =0.015
- Precipitation
 - R²=0.307, p =0.054

Lithology

- Tertiary volcanic rocks
 (n=32)
- Sedimentary rocks
- (n=3)
- Igneous intrusive rocks
 (n=5)

F = 2.4247; p = 0.102

Simplified geology of Panama

Seismicity

Variable	R ²	р	Slope
Events 10km	0.338	0.033	+
Events 25km	0.350	0.027	+
Depth 25km	0.334	0.035	-
Magnitude 25km	0.431	0.005	-
Events 50km	0.363	0.021	+
Depth 50km	0.466	0.002	-
Magnitude 50km	0.368	0.019	-
Events 75km	0.348	0.028	+
Depth 75km	0.420	0.007	-
Magnitude 75km	0.550	0.000	-
Events 100km	0.316	0.047	+

Rio Felix

- Highest eroding basin
 of my study
 - 597 m/Myr
- It is the only watershed that includes a volcanic structure (of
- the three in Panama)

Tectonics

- Landslide frequency increases with seismic events, thus increasing erosion
- Rock uplift induced by tectonics
 - Burica Peninsula uplifts at a rate of ~55mm/yr

Tropical cosmogenic studies

F=19.767, p<0.005

Tropical cosmogenic studies

Country	Average Erosion rates (m/Myr)	Peak Ground Acceleration (g)	Temperature (°C)	Precipitation (mm)
Panama (n=40)	218	2.29	24.4	2796
Puerto Rico (n= 24)	60.9	1.88	21.2	2733
Madagascar (n=4)	18.1	0.36	20.2	1135
Sri Lanka (n=16)	13.9	0.06	19.2	2480

Regional scale analysis

Region	Average erosion rate (m/Myr)	Average area (km²)
Southwestern (n= 3)	444 ± 70	34.2 ± 27.8
Northwestern (n= 5)	200 ± 77	476 ± 752
Central (n=7)	153 ± 199	783 ± 815
Central-eastern (n= 8)	103 ± 77	142 ± 141
Eastern (n= 17)	264 ± 151	84 ± 64

Parameter	R² (n=40)	R² (n=5)
Slope	0.009 (p=0.955)	0.192 (p=0.460)
Average Temperature	0.041 (p= 0.800)	0.071 (p=0.666)
Isothermality	0.381 (p= 0.015)	0.164 (p=0.499)
Mean annual precipitation	0.307 (p= 0.054)	0.000 (p=0.973)
Peak Ground Acceleration	0.307 (p= 0.054)	0.589 (p=0.130)
Seismic Magnitude 75km	0.550 (p = 0.000)	0.407 (p=0.247)
Seismic Events 10km	0.338 (p= 0.033)	0.813 (p=0.036)

Landslide samples

Grain size fraction	Upstream ¹⁰ Be (x10 ³ atoms/g)	Landslide ¹⁰ Be (x10 ³ atoms/g)	Downstream ¹⁰ Be (x10 ³ atoms/g)	% landslide material downstream
<0.25mm	39.1	12.8	36.3	10.65
0.25mm -1 mm	34.9	17.2	30.2	26.55
1mm – 2mm	26.3	14.1	20.3	49.18
2mm – 4mm	18	11	13.7	61.42
4mm – 9mm	13.6	10.4	11.4	68.75
9mm – 12mm	13.3	9.35	10.8	63.29
>12mm	9.46	7.79	7.33	127.54

Conclusions

 First determination of long-term erosion rates in Panama at the country scale

• Highest cosmogenic-derived erosion rate of tropical climates (Portenga and Bierman, 2011)

 Only exceeded by several studies in California Switzerland, and Italy (Temperate and Polar climates)

Lack of relationship with topography – complex erosive dynamics

Future work

 Comparison to previously published work on cosmogenic-derived erosion rates in Panama and calculate changes in reservoir storage capacity at redefined erosion rates

 Calculation of modern sediment yields to compare to long-term in our watersheds

• Filling the spatial gaps in our study with both longterm and modern erosion rates data

Acknowledgements

Committee

- Dr. Paul Bierman
- Dr. Mary Watzin
- Dr. Jim Vigoreaux

Special Thanks

- Dr. Kyle K. Nichols
- Eric Portenga
- Lucas Reusser

Academic departments and personnel

- RSENR
- Geology
- Family and Friends
- Funding
 - ARO Funding
 - UVM Graduate College
 - RSENR

Thanks for your attention

